导师推荐移动版

首页 - 南方科技大学

方小虎

姓名 方小虎
教师编号 21028
性别
学校 南方科技大学
部门
学位
学历
职称
联系方式
邮箱
人气

教师主页 团队成员 科研项目 研究领域 学术成果 教学 科研分享 新闻动态 疼痛医学中心 成果介绍 软件 毕业去向 加入我们 联系我们 方小虎 Google Scholar 助理教授 深港微电子学院 方小虎博士,于2015年获得香港中文大学博士学位,2015-2016年于香港中文大学任博士后研究员,2017-2019年于加拿大滑铁卢大学任博士后研究员,2021年9月加入南方科技大学深港微电子学院。方小虎博士长期从事射频集成电路,射频前端电路,微波与毫米波高性能无线发射机方面的研究,在研发宽带,高效率,低成本,可复用的4G和5G无线射频前端电路上取得了一系列优异成果,总计发表论文20余篇,其中以第一作者或通讯作者身份发表的SCI论文10余篇。现为IEEE高级会员、担任IEEE TMTT、IEEE MWCL、IEEE TCAS-I 和 TCAS-II、MTT-S IMS等知名期刊和会议的审稿人。 个人简介 个人简介 研究领域 课题组多年来一直从事与射频前端关键电路与器件设计相关的研究,在5G技术不断推成出新、6G技术逐步由规划走向现实的今天,课题组以研发基于第三代半导体的射频前端芯片、高能效发射机技术和线性化算法为主要的研究内容,为Massive MIMO、相控阵技术在B5G/6G中的大规模应用奠定硬件基础。 (1)面向Massive MIMO的相控阵射频前端芯片设计 Massive MIMO和相控阵技术是5G sub-6GHz和毫米波通信的核心技术,先进的有源阵列天线依赖于高性能的射频前端器件。课题组主要研发基于先进硅工艺和宽禁带半导体工艺的PA、LNA、开关、有源移相器等器件,及其系统集成方案。 (2)基于GaN的高能效功率放大技术 课题组先后进行了高效率4G功率放大器、针对宽带可复用发射机射频前端器件、针对5G MIMO基站高线性功放技术的研究课题。功放是高能效发射机的核心部件,决定了发射机的性能和效率,在5G/B5G中,功放技术在带宽、线性度和系统构架方面面临着前所未有的挑战。课题组主要研发基于GaN的高线性度宽带单片集成PA芯片,用于无线通信、无线能量传输等先进通信系统。 (3)低功耗发射机线性化技术研究 高能效的功率放大器通常工作于大信号压缩状态,这给发射机的输出信号带来了大量的失真和扰动。因此,结合了线性算法的低功耗线性化技术对于大规模多入多出发射机的普及至关重要。 学术成果 查看更多 [J01] Jie Shi, X. Fang*, Changning Wei, Tao Lin, Luyu Zhao and Kwok-Keung M. Cheng, “Design of a Highly Efficient Class-F GaN MMIC Power Amplifier Using a Multi-Function Bias Network and a Harmonic-Isolation L-C Resonator,” in IEEE Transactions on Circuits and Systems I: Regular Papers, doi: 10.1109/TCSI.2023.3313639. [J02] J. Shi, X. Fang*, H. Yu, J. Sui and K. -K. M. Cheng, “Novel Wideband Millimeter-wave GaN Power Amplifier Design using Transistors with Large Drain Capacitance and High Optimum Load Impedance,” IEEE Trans Circuits Syst. II, Exp. Brief., doi: 10.1109/TCSII.2023.3291383. [J03] J. Shi, W. Dai, X. Fang*, X Zhou, J Sui, J Xia, K Cheng, “Novel Wideband Fully Integrated GaN Power Amplifier Design Using a Hybrid Bandpass-Lowpass Output Matching Network,” IEEE Microw. Wireless Techn Lett., doi: 10.1109/LMWT.2023.3281389.  [J04] X. Fang, J. Xia*, and S. Boumaiza, “A 28-GHz beamforming Doherty power amplifier with enhanced AM-PM characteristic,” IEEE Trans. Microw. Theory Techn. vol. 68, no. 7, 3017-3027, Jun. 2020.  [J05] J. Xia, X. Fang*, and S. Boumaiza, “Millimeter wave SOI-CMOS power amplifier with enhanced AM-PM characteristic,” IEEE Access, vol. 8, pp. 8861-8875, 2020.  [J06] M. Liu, X. Fang*, and S. Boumaiza, “Dual band 3-way Doherty amplifier with extended back-off power range and bandwidth,” IEEE Trans Circuits Syst. II, Exp. Brief., vol. 67, no. 2, 270-274, Feb. 2020. [J07]Y. Li, X. Fang*, A. Jund, H. Huang and S. Boumaiza, “Two-port network theory based design method for broadband Class J Doherty amplifiers,” IEEE Access., vol. 7, pp. 51028-51038, 2019.  [J08] X. Fang*, A. Cheng and S. Boumaiza, “Linearity enhanced Doherty power amplifier using output combining network with pre-defined AM-PM characteristic,” IEEE Trans. Microw. Theory Techn.. vol. 67, no. 1, 195-204, Jan. 2019.  [J09] X. Fang*, H. Liu, K. M. Cheng, S. Boumaiza, “Modified Doherty amplifier with extended bandwidth and back-off power range using optimized combining currents,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 12, 5347-5357, Dec. 2018. [J10] X. Fang*, H. Liu, K. M. Cheng, S. Boumaiza, “Two-way Doherty power amplifier efficiency enhancement by incorporating transistors’ nonlinear phase distortion,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 2, pp. 168–170, Feb 2018.  [J11] X. Fang*, H. Liu, K. M. Cheng, “Extended Efficiency Range, Equal-cell Doherty Amplifier Design Using Explicit Circuit Model,” IEEE Microw. Wireless Compon. Lett. vol. 27, no. 5, pp. 497–499, May 2017.  [J12] X. Fang*, K. M. Cheng, “Improving power utilization factor of broadband Doherty amplifier by using band-pass auxiliary transformer,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 9, 2811-2820, Sep. 2015.  [J13] X. Fang*, K. M. Cheng, “Extension of high-efficiency range of Doherty amplifier by using complex combining load,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 9, pp. 2038–2047, Sep. 2014.  [J14] X. Y. Zhou, W. S. Chan, W. Feng, X. Fang, T. Sharma and S. Chen, “Broadband Doherty Power Amplifier Based on Coupled Phase Compensation Network,” IEEE Trans. Microw. Theory Techn, vol. 70, no. 1, pp. 210-221, Jan. 2022. [J15] Liu*, K. M. Cheng, C. Zhai and X. Fang, “Peak-Current-Ratio enhanced compact symmetrical Doherty amplifier design by using active harmonic control”, IEEE Trans. Microw. Theory Techn., vol. 69, no. 6, pp. 3158–3170, Jun. 2021.  [J16] H. Liu*, X. Fang and K. M. Cheng, “”Bandwidth Enhancement of Frequency Dispersive Doherty Power Amplifier,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 2, 185-188, Feb. 2020.  [J17] J. Xia*, X. Fang, and S. Boumaiza, “60-GHz Power Amplifier in 45-nm SOI-CMOS Using Stacked Transformer-Based Parallel Power Combiner,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 8, 711-713, Aug. 2018.  [J18] X. Zhou*, S. Zheng, W. Chan, X. Fang and D. Ho, “Post-matching Doherty power amplifier with extended back-off range based on self-generated harmonic injection”, IEEE Trans. Microw. Theory Techn., vol. 66, no. 4, 1951-1963, Apr. 2018.  Conference Papers: [C19]  B. Wei, J. Shi, X. Fang*, X. Zhou, Q. Wang and H. Yu, “Stability and Efficiency Enhancement of a C-band Class-F Power Amplifier Using a Coupling Compensation Method,” 2022 IEEE Conference on Antenna Measurements and Applications (CAMA), Guangzhou, China, 2022, pp. 1-4. [C20]  J. Shi, X. Fang*, J. Sui, X. Zhou, H. Yu and H. Yu, “A Linear Envelope Tracking Power Amplifier with Varactor-based Phase Compensation Network,” 2021 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (IWEM), Guangzhou, China, 2021, pp. 1-3. [C21]  J. Sui, X. Fang and Z. Luo, “A Four-Element 5G MIMO Antenna Design for Mobile Terminals Using Self-Curing Decoupling Technique,” 2021 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC), Shenzhen, China, 2021, pp. 117-119. [C22]  J. Shi, X. Fang* and X. Zhou, “A New Method to Design Highly Efficient C-band Harmonic-tuned Power Amplifiers,” 2021 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC), Shenzhen, China, 2021, pp. 154-156. [C23]  X. Y. Zhou, W. S. Chan, W. J. Feng, X. Fang, T. Sharmar, and Z. Liu, “Bandwidth enhanced Doherty power amplifier based on coupled phase compensation network with specific optimal impedance,” IEEE MTT-S International Wireless Symposium (IWS 2020), Shanghai, China., 2020, pp. 1-3. [C24]  X. Fang*, H. Golestaneh and S. Boumaiza, “Broadband and linearity enhanced Doherty power amplifier using complex-valued Load Modulation”, IEEE MTT-S 2018 Int. Microw. Symp. Dig., USA, Jun., 2018. [C25]  H. Liu*, X. Fang and K. M. Cheng, “Built-in AM/AM and AM/PM distortion study of generalized symmetrical Doherty amplifier”, Proc. European Microwave Conference, pp. 148–151, Oct. 2017 [C26]  X. Fang* and K. M. Cheng, “Broadband, wide efficiency range, Doherty amplifier design using frequency-varying complex combining load”, IEEE MTT-S 2015 Int. Microw. Symp. Dig., USA, May, 2015. [C27]  X. Fang, G. Wu*, W. Li, Y. Zhai, “A lumped-element analog predistorter for VHF application”, IEEE Int. Symp. on Signals Systems and Electronics, Nanjing, China, Sep. 2010. 新闻动态 更多新闻 科研聚焦 | 深港微电子学院方小虎课题组在TMTT杂志发表2项新研究成果 2024-03-13 科研聚焦 | 深港微电子学院方小虎课题组在TCAS-I和TCAS-II发表GaN MMIC功率放大器新成果 2023-10-26 课题组在MWTL发表基于混合带通低通网络的宽带高效率功放芯片新成果 2023-07-20 团队成员 查看更多 PrevNext UpDown 加入团队 一、课题组PI简介方小虎博士现任南方科技大学深港微电子学院助理教授(副研究员),博士生导师,独立PI。课题组主要从事微波与毫米波高性能无线发射机的研究,在研发宽带,高效率,低成本,可复用的4G和5G无线射频前端电路上取得了一系列优异成果。 目前我组正招收博士生。课题组当前的科研工作主要涉及基于第三代半导体工艺的高性能射频前端芯片的研发工作,前来的学者/学生将有机会接触国内外一流的集成电路工艺进行设计、流片和测试,为其未来的发展打下坚实的基础。个人主页:https://sme.sustech.edu.cn/index/teacher/neiye/id/95.html研究方向:射频集成电路设计、毫米波发射机、功率放大器以及线性化技术二、招聘要求及待遇本课题组招收申请考核制博士研究生(网址: http://gs.sustech.edu.cn),也欢迎海内外博士后、科研助理、访问学者以及交换生。三、应聘材料 1. 详细的个人简历,含个人情况(附近照)、教育背景(自大学起)、科研经历、工作经历、自我评价等; 2. 其他可以证明工作能力的材料。四、联系方式 有意者请将个人简历发送至fangxh@sustech.edu.cn。邮件标题请标明:应聘职位名称+本人姓名。来信时请注明可到岗时间。 查看更多 联系我们 联系地址 办公电话 电子邮箱 fangxh@sustech.edu.cn

赞助商广告:
方小虎
赞助商广告:
SCI学术指导