导师推荐移动版

首页 - 南方科技大学

毛陵玲

姓名 毛陵玲
教师编号 20683
性别
学校 南方科技大学
部门
学位
学历
职称
联系方式
邮箱
人气

教师主页 团队成员 科研项目 研究领域 学术成果 教学 科研分享 新闻动态 疼痛医学中心 成果介绍 软件 毕业去向 加入我们 联系我们 毛陵玲 Google Scholar 副教授 理学院, 化学系 2021年4月加入南方科技大学化学系,任副教授,博士生导师,课题组长。2014年于中山大学获得化学专业学士学位(导师:童明良教授),2018年于美国Northwestern University获得无机化学专业博士学位,师从Mercouri Kanatzidis教授,研究方向为二维杂化钙钛矿材料在光电器件中的应用。2018年12月至2021年3月在UC Santa Barbara从事博士后研究,合作导师为Ram Seshadri教授和Anthony Cheetham教授,研究方向为杂化金属卤化物材料。 个人简介 毛陵玲博士于2018年在美国西北大学获得无机化学专业博士学位,师从Mercouri Kanatzidis教授。2018年至2021年于美国加州大学圣塔芭芭拉分校材料研究院从事博士后研究,合作导师为Ram Seshadri教授和Anthony Cheetham教授,研究兴趣主要专注于新杂化材料的合成和表征,包括他们的构效关系和在光电器件当中的应用。近年来取得重要研究进展和成果,发表了33篇文章和一项专利授权,其中包括8篇第一作者论文发表在JACS(5篇为ESI高被引),1篇发表在Chem(封面文章),他引超过3000次, h-index 为22 (Google scholar 统计)。所获奖项包括国家自费留学生奖学金(2017),美国西北大学杰出博士生奖(2018)等。2020年入选海外高层次人才计划青年项目,2021年加入南方科技大学化学系。 个人简介 研究领域 无机化学,材料化学,半导体光电材料,晶态固体材料 学术成果 查看更多 2023 55. Liu, Y.; Liang, J.; Deng, Z.;*Guo, S.; Ji, X.; Chen, C.; Canepa, P.; Lü, X.;* Mao, L.* “0D Pyramid-intercalated 2D Bimetallic Halides with Tunable Electronic Structures and Enhanced Emission under Pressure.” Angew. Chem. Int. Ed. 2023, Accepted. DOI: 10.1002/anie. 202314977 54. Chen, C.; Zhang, L.; Ji, X.; Zhang, X.; Gong, Y.; Chen, R.; Mao, L.* “Guidelines for Designing Water-Stable Hybrid Lead Bromide Perovskites with Broad Emission.” Adv. Optical Mater. 2023, 2301966. DOI: 10.1002/adom.202301966 53. Li, R.; Zhou, Y.; Zhang, X.; Lin, J.; Chen, J.; Chen, C.; Pan, X.; Wang, P.; Chen, R.; Yin, J.*; Mao, L.* “In/Bi-based Direct- and Indirect-Gap Hybrid Double-Perovskite-Derived 1D Halides with Near-Unity Quantum Yield via Sb3+ Doping.” Chem. Mater. 2023, 35, 9362–9369. DOI: 10.1021/acs.chemmater.3c02183 52. Zhou, J.#; Xie, P.#; Wang, C.; Bian, T.; Chen, J.; Liu, Y.; Guo, Z.; Chen, C.; Pan, X.; Luo, M.; Yin, J.*; Mao, L.* “Hybrid Double Perovskite Derived Halides Based on Bi and Alkali Metals (K, Rb): Diverse Structures, Tunable Optical Properties and Second Harmonic Generation Responses.” Angew. Chem. Int. Ed. 2023,  62,  e2023076. (#contributed equally) DOI: 10.1002/anie.202307646 51. Chen, R.; Sun, C.; Cheng, X.; Lin, Y.; Zhou, J.; Yin, J.*; Cui, B. B.*; Mao, L.* “One-Dimensional Organic-Inorganic Lead Bromide Hybrids with Excitation-Dependent White-Light Emission Templated by Pyridinium Derivatives.” Inorg. Chem. 2023, 62,  9722–9731. DOI: 10.1021/acs.inorgchem.3c00997  50. Xue, J.; Huang, Y.; Liu, Y.;  Chen, Z.; Sung, H. H. Y.; Williams, I. D.; Zhu, Z.; Mao, L.*; Chen,  X.*; Lu. H.* “Rashba Band Splitting and Bulk Photovoltaic Effect Induced byHalogen Bonds in Hybrid Layered Perovskites.” Angew. Chem. Int. Ed. 2023,  e202304486. DOI: 10.1002/anie.202304486 49. Ji, X.; Liu, Y.;  Li, R.; Zhang, Z.; Zhang, X.; Chen, C.; Chen, J.; Lu, H.; Chen, R.; Mao, L.* “Mono- and Bidentate Chiral Ligands Lead to Efficient Circularly Polarized Luminescence in 0D and 3D Semiconducting Copper(I) Iodides.” Adv. Optical Mater. 2023, 2300541. DOI: 10.1002/adom.202300541 48. Chen, C.; Zhao, X.; Gong, Y.; Liu, Y.; Chen, Z.; Zhang, L.; Chen, J.; Deng, Z.; Lu, H.; Luo, M.; Canepa, P.*; Mao, L.* “Two-Dimensional Hybrid Dion-Jacobson Germanium Halide Perovskites.” Chem. Mater. 2023, 35, 3265–3275. DOI: 10.1021/acs.chemmater.3c00278 47. Chen, J.*#; Pan, X.#; Zhang, X.; Sun, C.; Ji, X.; Chen, R.; Mao, L.* “One-Dimensional Chiral Copper Iodide Chain-Like Structure Cu4I4(R/S-3-quinuclidinol)3 with Near-Unity Photoluminescence Quantum Yield and Efficient Circularly Polarized Luminescence.” Small 2023, 2300938. (#contributed equally) DOI: 10.1002/smll.202300938 ——Editor’s choice 46. Sun, C.; Deng, Z.;  Li, Z.;  Chen, Z.; Zhang, X.; Chen, J.; Lu, H.; Canepa, P.; Chen, R.; Mao, L.* “Achieving Near-unity Photoluminescence Quantum Yields in Organic–Inorganic Hybrid Antimony(III) Chlorides with the [SbCl5] Geometry.” Angew. Chem. Int. Ed. 2023, 62, e2022167. DOI: 10.1002/ange.202216720 45. Wang, Z.; Wang, X.; Chen, Z.; Liu, Y.; Xie, H.; Xue, J.; Mao, L.; Yan, Y.; Lu, H. “Turn-on Circularly Polarized Luminescence in Chiral Indium Chlorides by 5s2 Metal Centers.” Angew. Chem. Int. Ed. 2023, e202215206. DOI:10.1002/anie.202215206 2022 44. Li, S.; Li, X.; Kocoj, K. A.; Ji, X.; Yuan, S.; Macropulos, E. C.; Stoumpos, C. C.; Xia, F.; Mao, L.; Kanatzidis, M. G.; Guo, P. “Ultrafast Excitonic Response in Two-Dimensional Hybrid Perovskites Driven by Intense Midinfrared Pulses.” Phys. Rev. Lett. 2022, 129, 177401. DOI: 10.1103/PhysRevLett.129.177401 43. Chen, Z.; Liu, Y.; Gong, S.; Zhang, Z.; Cao, Q.; Mao, L.; Chen, X.; Lu, H. “Expanding the Absorption and Photoresponse of 1D Lead–halide Perovskites via Ultrafast Charge Transfer.” J. Chem. Phys. 2022, 157, 084705. DOI: 10.1063/5.0105878 42. Liu, Y.; Gong, Y.; Geng, S.; Feng, M.; Manidaki, D.; Deng, Z.; Stoumpos, C. C.; Canepa, P.*; Xiao, Z.; Zhang, W.; Mao, L.* “Hybrid Germanium Bromide Perovskites with Tunable Second Harmonic Generation.” Angew. Chem. Int. Ed. 2022, 61,  e2022088. DOI: 10.1002/anie.202208875 41. Ji, X.; Geng, S.;  Zhang, S.;  Gong, Y.; Zhang, X.; Li, R.;  Liu, Y.;  Chen, J.;  Chen, R.; Xiao, Z.*; Mao, L.* “Chiral 2D Cu(I) Halide Frameworks.” Chem. Mater. 2022, 34, 8262–8270. DOI: 10.1021/acs.chemmater.2c01729 40. Mao, L.*; Morgan, E. E.; Li. A.; Kennard, R. M.; Hong, M. J.; Liu, Y.; Dahlman, C. J..; Labram, J. G.; Chabinyc, M. L.; Seshadri, R.* “Layered Hybrid Lead Iodide Perovskites with Short Interlayer Distances.” ACS Energy Lett. 2022, 7, 2801–2806. DOI:10.1021/acsenergylett.2c01321 39. Kennard, R. M.; Dahlman, C. J.; Morgan, E. E.; Chung, J.; Cotts, B. J.; Kincaid, J. R. A.; DeCrescent, R. A.; Stone, K. H.; Panuganti, S.; Mohtashami, Y.; Mao, L.; Schaller, R. D.; Salleo, A.; Kanatzidis, M. G.; Schuller, J. A.; Seshadri, R.; Chabinyc, M. L. “Enhancing and Extinguishing the Different Emission Features of 2D (EA1−xFAx)4Pb3Br10 Perovskite Films.” Adv. Optical. Mater. 2022, 10, 2200547. DOI: 10.1002/adom.202200547 38. Chen, C.; Morgan, E. E.; Liu, Y.; Chen, J.; Seshadri, R.; Mao, L.* “ “Breathing” organic cation to stabilize multiple structures in low-dimensional Ge-, Sn-, and Pb-based hybrid iodide perovskites.” Inorg. Chem. Front., 2022, Advance Article. DOI:10.1039/D2QI01247B ——part of the themed collection: Frontiers Emerging Investigators Series 37. Chen, J.; Zhang, S.; Ye, S.* ; Cheetham, A. K.* ; Mao, L.* “Structural Origin of Enhanced Circularly Polarized Luminescence in Hybrid Manganese Bromides.” Angew. Chem. Int. Ed. 2022, 61, e202205906. DOI: 10.1002/anie.202205906 36. Xu, B.; Mao, W.; Wu, C.; Li, J.; Lu, Z.; Luo, M.; Liu, L. L.; Mao, L.; Chen, D.; Xia, H. “A One-Pot Strategy for the Synthesis of β-Substituted Rhoda- and Irida-Carbolong Complexes.” Chin. J. Chem. 2022, 40, 1777—1784. DOI: 10.1002/cjoc.202200179 35. Vishnoi, P.; Zuo, J. L.; Li, X.; Binwal, D. C.; Wyckoff, K. E.; Mao, L.; Kautzsch, L.; Wu, G.; Wilson, S. D.;  Kanatzidis, M. G.;  Seshadri, R.; Cheetham, A. K. “Hybrid Layered Double Perovskite Halides of Transition Metals.” J. Am. Chem. Soc. 2022, 144, 6661–6666. DOI: 10.1021/jacs.1c12760 34. Li, J.; Wang, J.; Zhou, Y.; Yu, C.; Liu, H.; Qi, X.; Li, R.; Hua, Y.; Yu, Y.; Chen, R.; Chen, D.; Mao, L.; Xia, H.; Wang, H. L. “Boosting the Performance and Stability of Inverted Perovskite Solar Cells by Using a Carbolong Derivative to Modulate the Cathode Interface.” Mater. Chem. Front., 2022, 6, 2211-2218. DOI: 10.1039/D2QM00452F 33. Mao, L.*; Chen, J.; Vishnoi, P.; Cheetham, A. K.* “The Renaissance of Functional Hybrid Transition-Metal Halides.” Acc. Mater. Res. 2022, 3, 439-448. DOI:10.1021/accountsmr.1c00270 32. Wang, S.; Morgan, E. E.; Panuganti, S.; Mao, L.; Vishnoi, P.; Wu, G.; Liu, Q.; Kanatzidis, M. G.; Schaller, R. D.; Seshadri, R. “Ligand Control of Structural Diversity in Luminescent Hybrid Copper(I) Iodides.” Chem. Mater. 2022, 34, 3206–3216. DOI:10.1021/acs.chemmater.1c04408 2021 31. Kennard, R.M.; Dahlman, C. J.; Chung, J.; Cotts, B. J.; Mikhailovsky, A. A.; Mao, L.; DeCrescent, R. A.; Stone, K. H.; Venkatesan, N. R.; Mohtashami, Y.; Assadi, S.; Salleo, A.; Schuller, J. A.; Seshadri, R.; Chabinyc, M. L.; “Growth-Controlled Broad Emission in Phase-Pure Two-Dimensional Hybrid Perovskite Films.” Chem. Mater. 2021, 33, 7290–7300. DOI: 10.1021/acs.chemmater.1c01641 Prior to SUSTech First, co-first and corresponding authored publications 30. Evans, H.A. #; Mao, L. #; Seshadri, R.; Cheetham, A. K.; “Layered double perovskites.”Annu. Rev. Mater. Res. 2021, 51, 351–380. (#contributed equally) DOI: 10.1146/annurev-matsci-092320-102133  29. Mao, L.; Guo, P.; Wang, S.; Cheetham, A. K.; Seshadri, R. “Design Principles for Enhancing Photoluminescence Quantum Yield in Hybrid Manganese Bromides.” J. Am. Chem. Soc., 2020, 142, 13582–13589. DOI: 10.1021/jacs.0c06039 [ESI highly cited paper] 28. Mao, L.; Guo, P.; Kepenekian, M.; Spanopoulos, I.; He, Y.; Katan, C.; Even, J.; Schaller, R.; Seshadri, R.; Stoumpos, C. C.; Kanatzidis, M. G. “Organic Cation Alloying on Intralayer A and Interlayer A’ Sites in 2D Hybrid Dion-Jacobson Lead Bromide Perovskites (A’)(A)Pb2Br7.” J. Am. Chem. Soc. 2020, 142, 8342–8351. DOI: 10.1021/jacs.0c01625 27. Morgan, E. E.; Mao, L.*; Teicher, S. L. M.; Wu, G.; Seshadri, R. “Tunable Perovskite-Derived Bismuth Halides: Cs3Bi2(Cl1-xIx)9.” Inorg. Chem., 2020, 59, 3387–3393. DOI: 10.1021/acs.inorgchem.9b03415 26. Mao, L.; Teicher, S.; Stoumpos, C. C.; Kennard, R. M.; DeCrescent, R.; Wu, G.; Schuller, J.; Chabinyc, M.; Cheetham, A. K.; Seshadri, R. “Chemical and Structural Diversity of Hybrid Layered Double Perovskite Halides.” J. Am. Chem. Soc., 2019, 141, 19099–19109. DOI: 10.1021/jacs.9b09945 25. Mao, L.; Kennard, R. M.; Traore, B.; Ke, W.; Katan, C.; Even, J.; Chabinyc, M. L.; Stoumpos, C. C.; Kanatzidis, M. G. “Seven-layered 2D Hybrid Lead Iodide Perovskites.” Chem, 2019, 5, 2593–2604. Cover article. DOI: 10.1016/j.chempr.2019.07.024 24. Ke, W.#; Mao, L.#; Stoumpos, C. C.; Hoffman, J.; Spanopoulos, I.; Mohite, A. D.; Kanatzidis, M. G. “Compositional and Solvent Engineering in Dion–Jacobson 2D Perovskites Boosts Solar Cell Efficiency and Stability.” Adv. Energy Mater., 2019, 1803384. (#contributed equally) DOI: 10.1002/aenm.201803384 [ESI highly cited paper] 23. Mao, L.; Stoumpos, C. C.; Kanatzidis, M. G. “Two-Dimensional Hybrid Halide Perovskites: Principles and Promises.” J. Am. Chem. Soc., 2019, 141, 1171–1190. DOI: 10.1021/jacs.8b10851 [ESI hot paper& highly cited paper] 22. Mao, L.; Guo, P.; Kepenekian, M.; Hadar, I.; Katan, C.; Even, J.; Schaller, R.; Stoumpos, C. C.; Kanatzidis, M. G. “Structural Diversity in White-light Emitting Hybrid Lead Bromide Perovskites.” J. Am. Chem. Soc., 2018, 140, 13078–13088. DOI: 10.1021/jacs.8b08691 [ESI highly cited paper] 21. Mao, L.; Ke, W.; Pedesseau, L.; Wu, Y.; Katan, C.; Even, J.; Wasielewski, M. R.; Stoumpos, C. C.; Kanatzidis, M. G. “Hybrid Dion–Jacobson 2D Lead Iodide Perovskites.” J. Am. Chem. Soc., 2018, 140, 3775–3783. DOI: 10.1021/jacs.8b00542 [ESI highly cited paper] 20. Mao, L.; Wu, Y.; Stoumpos, C. C.; Traore, B.; Katan, C.; Even, J.; Wasielewski, M. R.; Kanatzidis, M. G. “Tunable White-light Emission in Single Cation Templated Three-layered 2D Perovskites (CH3CH2NH3)4Pb3Br10–xClx.” J. Am. Chem. Soc., 2017, 139, 11956–11963. DOI: 10.1021/jacs.7b06143 [ESI highly cited paper] 19. Mao, L.; Wu, Y.; Stoumpos, C. C.; Wasielewski, M. R.; Kanatzidis, M. G. “White-light Emission and Structural Distortion in New Corrugated 2D Lead Bromide Perovskites.” J. Am. Chem. Soc., 2017, 139, 5210–5215. –featured in C&EN news DOI: 10.1021/jacs.7b01312 [ESI highly cited paper] 18. Mao, L.; Tsai, H.; Nie, W.; Ma, L.; Im, J.; Stoumpos, C. C.; Malliakas, C. D.; Hao, F.; Wasielewski, M. R.; Mohite, A. D.; Kanatzidis, M. G. “Role of Organic Counterion in Lead- and Tin-Based Two-Dimensional Semiconducting Iodide Perovskites and Application in Planar Solar Cells.” Chem. Mater., 2016, 28, 7781–7792. DOI: 10.1021/acs.chemmater.6b03054 17. Mao, L. #; Liu, W. #; Li, Q. W.; Jia, J. H.; Tong, M. L. “Controllable Self-Assembly of Two Luminescent Silver (I) Metal–Organic Frameworks Bearing a Tetradentate Ligand.” (#contributed equally) Cryst. Growth Des., 2014, 14, 4674–4680. DOI: 10.1021/cg500757a Coauthored publications 16. Hao, J.; Lu, H.; Mao, L.; Chen, X.; Beard, M. C.; Blackburn, J. L. “Direct Detection of Circularly Polarized Light Using Chiral Copper Chloride–Carbon Nanotube Heterostructures.” ACS Nano, 2021, ASAP. DOI: 10.1021/acsnano.1c01134 15. Wang, S.; Morgan, E. E; Vishnoi, P.; Mao, L.; Teicher, S. M. L.; Wu, G.; Liu, Q.; Cheetham, A. K.; Seshadri, R. “Tunable Luminescence in Hybrid Cu(I) and Ag(I) Iodides.” Inorg. Chem. 2020, 59, 15487–15494. DOI: 10.1021/acs.inorgchem.0c02517 14. Dahlman, C. J.; Venkatesan, N. R.; Corona, P. T.; Kennard, R. M.; Mao, L.; Smith, N. C.; Zhang, J.; Seshadri, R.; Helgeson, M. E.; Chabinyc, M. L. “Structural Evolution of Layered Hybrid Lead Iodide Perovskites in Colloidal Dispersions.” ACS Nano, 2020, 14, 11294–11308. DOI: 10.1021/acsnano.0c03219 13. Ke, W.; Chen, C.; Spanopoulos, I.; Mao, L.; Hadar, I.; Li, X.; Hoffman, J. M.; Song, Z.; Yan, Y.; Kanatzidis, M. G. “Narrow-Bandgap Mixed Lead and Tin-Based 2D Dion–Jacobson Perovskites Boost the Performance of Solar Cells.” J. Am. Chem. Soc., 2020, 142 (35), 15049-1505. DOI: 10.1021/jacs.0c06288 12. Kong, L.; Liu, G.; Gong, J.; Mao, L.; Chen, M.; Hu, Q.; Lü, X.; Yang, W.; Kanatzidis, M. G.; Mao, H. “Highly Tunable Properties in Pressure-treated Two-dimensional Dion–Jacobson Perovskites.” Proc. Natl. Acad. Sci., 2020, 117, 16121–16126. DOI: 10.1073/pnas.2003561117 11. Liu, W.; Chen, C. C.; Mao, L.; Wu, S. G.; Wang, L. F.; Tong, M. L. “Tuning the net topology of a ternary Ag(i)-1,2,4,5-tetra(4-pyridyl)benzene-carboxylate framework: structures and photoluminescence.” CrystEngComm, 2019, 21, 6446–6451. DOI: 10.1039/C9CE01155B 10. Guo, P.; Huang, W.; Stoumpos, C. C.; Mao, L.; Gong, J.; Zeng, L.; Diroll, B.; Xia, Y.; Ma, X.; Gosztola, D.; Xu, T.; Ketterson, J.; Bedzyk, M.; Facchetti, A.; Marks, T. J.; Kanatzidis, M. G.; Schaller, R. “Hyperbolic Dispersion Arising from Anisotropic Excitons in Two-Dimensional Perovskites.” Phys. Rev. Lett., 2018, 121, 127401. DOI: 10.1103/PhysRevLett.121.127401 9. Li, J.; Stoumpos, C. C.; Trimarchi, G. G.; Chung, I.; Mao, L.; Chen, M.; Wasielewski, M. R.; Wang, L.; Kanatzidis, M. G. “Air-Stable Direct Bandgap Perovskite Semiconductors: All-Inorganic Tin-Based Heteroleptic Halides AxSnClyIz (A = Cs, Rb).” Chem. Mater., 2018, 30, 4847-4856. DOI: 10.1021/acs.chemmater.8b02232 8. Guo, P.; Stoumpos, C. C.; Mao, L.; Sadasivam, S.; Ketterson, J.; Darancet, P.; Kanatzidis, M. G.; Schaller, R. “Cross-plane Coherent Acoustic Phonons in Two-dimensional Organic-inorganic Hybrid Perovskites.” Nat. Commun., 2018, 9, 2019. DOI: 10.1038/s41467-018-04429-9 7. Ke, W.; Stoumpos, C. C.; Spanopoulos, I.; Mao, L.; Chen, M.; Wasielewski, M. R.; Kanatzidis, M. G. “Efficient Lead-Free Solar Cells Based on Hollow {en}MASnI3 Perovskites.” J. Am. Chem. Soc., 2017, 139, 14800–14806. DOI: 10.1021/jacs.7b09018 6. Ke, W.; Stoumpos, C. C.; Zhu, M.; Mao, L.; Spanopoulos, I.; Liu, J.; Kontsevoi, O. Y.; Chen, M.; Sarma, D.; Zhang, Y.; Wasielewski, M. R.; Kanatzidis, M. G. “Enhanced photovoltaic Performance and Stability with a New Type of Hollow 3D Perovskite {en}FASnI3.” Sci. Adv., 2017, 3, e1701293. DOI: 10.1126/sciadv.1701293 [ESI highly cited paper] 5. Stoumpos, C. C.; Mao, L.; Malliakas, C. D.; Kanatzidis, M. G. “Structure–Band Gap Relationships in Hexagonal Polytypes and Low-Dimensional Structures of Hybrid Tin Iodide Perovskites.” Inorg. Chem., 2017, 56, 56–73. DOI: 10.1021/acs.inorgchem.6b02764 4. Zhang, X.; Xu, C. X.; Di Felice, R.; Sponer, J.; Islam, B.; Stadlbauer, P.; Ding, Y.; Mao, L.; Mao, Z. W.; Qin, P. Z. “Conformations of Human Telomeric G-quadruplex Studied Using a Nucleotide-Independent Nitroxide Label.” Biochemistry, 2016, 55, 360–372. DOI: 10.1021/acs.biochem.5b01189 3. Liu, W.; Bao, X.; Mao, L.; Tucek, J.; Zboril, R.; Liu, J. L.; Guo, F. S.; Ni, Z. P.; Tong, M. L. “A Chiral Spin Crossover Metal–Organic Framework.” Chem. Comm., 2014, 50, 4059–4061. DOI: 10.1039/C3CC48935C 2. Guo, F. S.; Chen, Y. C.; Mao, L.; Lin, W. Q.; Leng, J. D.; Tarasenko, R.; Orendáč, M.; Prokleška, J.; Sechovský, V.; Tong, M. L. “Anion‐Templated Assembly and Magnetocaloric Properties of a Nanoscale {Gd38} Cage versus a {Gd48} Barrel.” Chem. Eur. J., 2013, 19, 14876–14885. DOI: 10.1002/chem.201302093 1. Bao, X.; Liu, W.; Mao, L.; Jiang, S. D.; Liu, J. L.; Chen, Y. C.; Tong, M. L. “Programmed Self-Assembly of Heterometallic [3×3] Grid [MIICuII4CuI4] (M= Fe, Ni, Cu, and Zn).” Inorg. Chem., 2013, 52, 6233–6235. DOI: 10.1021/ic302808m 团队成员 查看更多 PrevNext UpDown 加入团队  课题组常年招收博士后,具体研究课题见科研项目一栏。应聘者请将个人简历及代表性论文发送至maoll@sustech.edu.cn。  博士后岗位要求:1. 获得(或将获得)化学或材料学相关专业的博士学位;具有独立科研能力,拥有较好的英文阅读和写作能力;在国际主流期刊上以第一作者或通讯作者发表过高水平SCI论文。2. 有无机合成(晶体生长),单晶、粉末表征和解析,光学和磁学表征背景和经验者优先考虑。聘任期间待遇:1. 基本待遇: a. 博士后聘期两年。 b. 年薪33.5万元,含广东省补助15万元(税前)及深圳市生活补助6万元(税后),并按深圳市有关规定参加社会保险及住房公积金。博士后福利费参照学校员额内教职工标准发放。 c. 特别优秀者可以申请校长卓越博士后,年薪可达41.5万元(含广东省及深圳市补助) d. 对于落户深圳的博士后,可以按博士落户的身份向深圳市申请一次性租房和生活补贴3万元(免税,自主网上申请)。2. 福利待遇:院系、课题组根据具体科研工作业绩情况,为博士后提供相应的科研绩效奖励;每个课题组员额内的博士后可获得两年2.5万元的学术交流资费;博士后人员落户深圳,其配偶及未成年子女随迁入户、子女入托、入学等按相关条例执行。3. 其它支持: a. 根据博士后具体科研工作业绩情况,可享受院系、课题组相应的科研绩效奖励。 b. 课题组提供充足的科研支持,并协助博士后本人作为负责人申请中国博士后科学基金、国家自然科学基金及广东省、深圳市各级科研项目。 c. 应届或临近毕业的优秀博士,根据全国博士后管委会印发的《博士后创新人才支持计划》,申请获得"博新计划"支持的博士后,可获得国家给予每人两年60万元的资助(其中40万元为博士后日常经费,20万元为博士后科学基金)。 d. 课题组可协助符合条件的博士后申请“广东省海外青年博士后引进项目”。即在世界排名前200名的高校(不含境内,排名以上一年度泰晤士、USNEWS、QS和上海交通大学的世界大学排行榜为准)获得博士学位,在广东省博士后设站单位从事博士后研究,并承诺在站2年以上的博士后,申请成功后省财政给予每名进站博士后资助60万元生活补贴;对获得本项目资助,出站后与广东省用人单位签订工作协议或劳动合同,并承诺连续在粤工作3年以上的博士后,省财政给予每人40万元住房补贴。 e. 博士后出站选择留深从事科研工作,且与本市企事业单位签订3年以上劳动(聘用)合同的,可以申请深圳市博士后留深来深科研资助。深圳市政府给予每人30万元的科研启动经费资助。 f. 依据自身符合的条件情况,在站或出站留深博士后可申请 "深圳市孔雀计划C类人才"或者"深圳市后备级人才",享受5年160万的奖励津贴(免税)。 g. 对于优秀的出站博士后将积极推荐协助其申请南方科技大学研究助理教授岗位。   查看更多 联系我们 联系地址 南方科技大学理学院大楼化学系 办公电话 电子邮箱 maoll@sustech.edu.cn

赞助商广告:
毛陵玲
赞助商广告:
SCI学术指导