个人简介
Personal Profile
张自立,同济大学土木工程学院教授,国家优秀青年科学基金(海外)获得者。2022年7月回国前为丹麦奥胡斯大学长聘副教授,曾主持丹麦国家级项目3项,发表SCI期刊论文40余篇,出版英文专著1部,2021,2022连续两年入选斯坦福大学发布的全球前2%顶尖科学家榜单。目前担任SCI期刊ASME Journal of Offshore Mechanics andArctic Engineering副主编、Structural Controland Health Monitoring编委。自2011年以来主要致力于海上新能源结构耦合振动与振动控制的研究。研究成果被欧洲风电工业界广泛关注并开始应用。
研究方向Research Directions
海上新能源结构(风能与波浪能),结构动力学、阻尼与控制,波浪-结构、风-结构的流固耦合
2. 机电结构优化与控制 研究内容:在对机电结构进行分析和优化的基础上,运用控制理论进行结构参数的调整,使结构性能满足设计要求。1. 仿生结构材料拓扑优化设计, 仿生机械设计 研究内容:以仿生结构为研究对象,运用连续体结构拓扑优化设计理论和方法,对多相仿生结构(机构)材料进行2. 机电结构优化与控制 研究内容:在对机电结构进行分析和优化的基础上,运用控制理论进行结构参数的调整,使结构性能满足设计要求。1. 仿生结构材料拓扑优化设计, 仿生机械设计 研究内容:以仿生结构为研究对象,运用连续体结构拓扑优化设计理论和方法,对多相仿生结构(机构)材料进行整体布局设计。 整体布局设计。
报考意向
招生信息
土木工程学院
硕士研究生
序号
专业
招生人数
年份
1
土木工程(博士)
4
2023
博士研究生
序号
专业
招生人数
年份
1
土木工程(博士)
2
2023
报考意向
姓名:
手机号码:
邮箱:
毕业院校:
所学专业:
报考类型:
博士
硕士
个人简历*:
上传附件
支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg
成绩单*:
上传附件
支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg
其他材料:
上传附件
支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg
备注:
提交
科研项目
1. 国家海外高层次青年人才项目,2023/01-2027/12,在研,项目负责人2. 同济大学高层次人才引进启动项目,2022/08-2027/07,在研,项目负责人2. 丹麦AUFF基金会青年人才项目,2017/10-2021/12,结题,项目负责人3. 上海市科学技术委员会,中-丹政府间国际科技合作基金项目,2018/04-2021/03,结题,丹方负责人4. 丹麦高等教育和科学部,EUopSTART 项目,2018/10-2019/01,结题,项目负责人
研究成果
一. 代表性期刊论文 (*为通讯作者)[41] Song Y, Sun T, Zhang Z*. Fatigue reliability analysis of floating offshore wind turbines considering the uncertainty due to finite sampling of load conditions. Renewable Energy, 2023, 212: 570-588.[40] Zhang Z, Chen B, Hua X. Closed-form optimization of tuned mass-damper-inerter (TMDI) in flexible structures. Journal of Building Engineering, 2023, 72: 106554.[39] Zhang Z*, Hammad KA, Song Y. Closed-form derivation of aerodynamic damping matrix and pitch vector of an aero-servo-elastic wind turbine system. Journal of Wind Engineering & Industrial Aerodynamics, 2023, 238: 105409.[38] Song Y, Sørensen JD, Zhang Z, Sun T, Chen J. Load condition determination for efficient fatigue analysis of floating offshore wind turbines using a GF-discrepancy-based point selection method. Ocean Engineering, 2023, 276: 114211.[37] Høeg CE, Zhang Z*. Reaction loads analysis of floating offshore wind turbines: methods and applications in the modal-based modelling framework. Ocean Engineering, 2022, 266: 112952.[36] Ren Y, Meng Q, Chen C, Hua X, Zhang Z, Chen Z. Dynamic behavior and damage analysis of a spar-type floating offshore wind turbine under ship collision. Engineering Structures, 2022, 272: 114815.[35] Chen B, Zhang Z*, Xugang Hua*. Equal modal damping-based optimal design of a grounded tuned mass-damper-inerter for flexible structures. Structural Control and Health Monitoring, 2022, e3106.[34] Zhang Z. Vibration suppression of floating offshore wind turbines using electromagnetic shunt turned mass damper. Renewable Energy, 2022, 198: 1279-1295.[33] Sun T, Zhang Z*. Optimal control and performance evaluation of an inerter based point absorber wave energy converter. Ocean Engineering, 2022, 29: 111883.[32] Chen B, Zhang Z*, Hua X*, Basu B. Optimal calibration of a tuned liquid column damper (TLCD) for rotating wind turbine blades. Journal of Sound and Vibration, 2022, 521: 116565.[31] Zhang Z. Understanding and exploiting the nonlinear behavior of tuned liquid dampers (TLDs) for structural vibration control by means of a nonlinear reduced order model (ROM). Engineering Structures, 2022, 251: 113524 .[30] Larsen TG, Zhang Z*, Høgsberg JB. Vibration damping of offshore wind turbines by optimally calibrated pendulum absorber with shunted electromagnetic transducer. Journal of Sound and Vibration, 2021, 505: 116144.[29] Chen B, Zhang Z*, Hua X. Closed-form optimal calibration of a tuned liquid column damper (TLCD) for flexible structures. International Journal of Mechanical Sciences, 2021, 198: 106364.[28] Høeg CE, Zhang Z*. The influence of gyroscopic effects on dynamic responses of floating offshore wind turbines in idling and operational conditions. Ocean Engineering, 2021, 227: 108712.[27] Zhang Z*, Høeg CE. Inerter-enhanced tuned mass damper for vibration damping of floating offshore wind turbines. Ocean Engineering, 2021, 223: 108663.[26] Song Y, Basu B, Zhang Z, Sorensen JD, Chen J. Dynamic reliability analysis of a floating offshore wind turbine under wind-wave joint excitations via probability density evolution method. Renewable Energy, 2021, 168: 991-1014.[25] Chen B, Basu B, Hua X*, Feng Z, Zhang Z*, Chen Z, Nielsen SRK. Online DWT algorithm for identification of aerodynamic damping in wind turbines. Mechanical Systems and Signal Processing, 2020, 152: 107437.[24] Chen B, Hua X*, Zhang Z*, Nielsen SRK, Chen Z. Active flutter control of the wind turbines using double-pitched blades. Renewable Energy, 2020, 163: 2081-2097.[23] Zhang Z*, Larsen TG. Optimal calibration of the rotational inertia double tuned mass damper (RIDTMD) for rotating wind turbine blades. Journal of Sound and Vibration, 2020, 493: 115827.[22] Hua X, Meng Q, Chen B, Zhang Z. Structural damping sensitivity affecting the flutter performance of a 10-MW offshore wind turbine. Advances in Structural Engineering, 2020, 10.1177/1369433220927260.[21] Zhang Z, Fitzgerald B. Tuned mass-damper-inerter (TMDI) for suppressing edgewise vibrations of wind turbine blades. Engineering Structures, 2020, 221: 110928.[20] Zhang Z*, Høeg CE . Dynamics and control of spar type floating offshore wind turbines with tuned liquid column dampers. Structural Control and Health Monitoring, 2020, 27(6): e2532.[19] Zhang Z. Optimal tuning of the tuned mass damper (TMD) for rotating wind turbine blades. Engineering Structures, 2020, 207: 110209.[18] Zhang Z. Numerical and experimental investigations of the sloshing modal properties of sloped-bottom tuned liquid damper. Engineering Structures, 2020, 204: 110042.[17] Chen J, Song Y, Peng Y, Nielsen SRK, Zhang Z. An Efficient Rotational Sampling Method of Wind Fields for Wind Turbine Blade Fatigue Analysis. Renewable Energy, 2020, 146: 2170-2187.[16] Roy A, Zhang Z, Ghosh A, Basu B. On the nonlinear performance of a tuned sloshing damper under small amplitude excitation. Journal of Vibration and Control, 2019, 25: 2695-2705.[15] Zhang Z*, Basu B, Nielsen SRK. Real-time hybrid aeroelastic simulation of wind turbines with various types of full-scale tuned liquid dampers. Wind Energy, 2019, 22(2): 239-256.[14] Ji W, Luo Q, Zhang Z*, Wang H, Du T, Heiselberg PK. Investigation on thermal performance of the wall-mounted attached ventilation for night cooling under hot summer conditions. Building and Environment, 2018, 146: 268-279.[13] Grinderslev C, Lubek M, Zhang Z*. Nonlinear fluid-structure interaction of bridge deck: CFD analysis and semi-analytical modeling. Wind and Structures, 2018, 27(6): 381-397.[12] Chen B, Zhang Z, Hua X, Nielsen SRK, Basu B. Enhancement of flutter stability in wind turbines with a new type of passive damper of torsional rotation of blades. Journal of Wind Engineering & Industrial Aerodynamics, 2018, 173: 171-179.[11] Zhang Z*, Chen B, Nielsen SRK, Olsen J. Gyroscopic power take-off wave energy point absorber in irregular sea states. Ocean Engineering, 2017, 143: 113-124.[10] Chen B, Zhang Z, Hua X, Basu B, Nielsen SRK. Identification of aerodynamic damping in wind turbines using time-frequency analysis. Mechanical Systems and Signal Processing, 2017, 91: 198-214.[9] Zhang Z, Staino A, Basu B*, Nielsen SRK. Performance evaluation of full scale tuned liquid dampers (TLDs) for vibration control of large wind turbines using real time hybrid testing. Engineering Structures, 2016, 126: 417-431.[8] Basu B, Zhang Z, Nielsen SRK. Damping of edgewise vibration in wind turbine blades by means of circular liquid dampers. Wind Energy, 2016, 19(2): 213-226.[7] Zhang Z*, Nielsen SRKN, Basu B, Li J. Nonlinear modeling of tuned liquid dampers (TLDs) in rotating wind turbine blades for edgewise vibration control. Journal of Fluids and Structures, 2015, 59: 252-269.[6] Nielsen SRK, Zhang Z, Kramer MM, Olsen J. Stability analysis of the Gyroscopic Power Take-Off wave energy point absorber. Journal of Sound and Vibration, 2015, 355: 418-433.[5] Zhang Z*, Basu B, Nielsen SRK. Tuned liquid column dampers for mitigation of edgewise vibrations in rotating wind turbine blades. Structural Control and Health Monitoring, 2015, 22(3): 500-517.[4] Zhang Z*, Li J, Nielsen SRK, Basu B. Mitigation of edgewise vibrations in wind turbine blades by means of roller dampers. Journal of Sound and Vibration, 2014, 333(21): 5283-5298.[3] Zhang Z*, Nielsen SRK, Blaabjerg F, Zhou D. Dynamics and control of lateral tower vibrations in offshore wind turbines by means of active generator torque. Energies, 2014, 7(11): 7746-7772.[2] Zhang Z, Chen JB, Li J. Theoretical study and experimental verification of vibration control of offshore wind turbines by a ball vibration absorber. Structure and Infrastructure Engineering, 2014, 10(8), 1087-1100.[1] Nielsen SRK, Zhou Q, Kramer MM, Basu B, Zhang Z. Optimal control of nonlinear wave energy point converters. Ocean Engineering, 2013; 12: 176–187.二. 专著Nielsen SRK, Zhang Z. Stochastic Dynamics. 2017. Aarhus University Press.
学生信息
当前位置:教师主页 > 学生信息
入学日期
所学专业
学号
学位
招生信息
当前位置:教师主页 > 招生信息
招生学院
招生专业
研究方向
招生人数
推免人数
考试方式
招生类别
招生年份 |